Abstract

Time-dependent density-functional theory (DFT) leads to a formally exact eigenvalue equation for determining excitation energies. In an adiabatic approximation, we have first calculated the lowest excitation energies for various neutral atoms and positively charged atomic ions, for comparison with experimental data. Then, to gain further insight, the time-dependent theory is reformulated by using the chemical potential equation of time-independent DFT. The central new quantity then appearing is a second functional derivative of the single-particle kinetic energy Ts. If chemical hardness can be treated as a correction to the term involving Ts, then further analytical progress is effected. Good numerical results testify to the usefulness of invoking the time-independent DFT within the present context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.