Abstract

AbstractLowering cost will prompt the sustainable development of sugarcane‐based ethanol industry. In this work, we developed a low‐cost process for ethanol production from sugarcane by a genetically engineered Zymomonas mobilis. Fermentation media were first optimized, resulting in a 15.54% increase in ethanol fermentation efficiency as compared to control media. To further reduce the byproduct levan formation, a levansucrase‐encoding gene of Z. mobilis, sacB, was deleted through the type I‐F CRISPR‐Cas system, which resulted in a further elevation of both ethanol conversion ratio and productivity comparing with the starting strain ZMS912 (87.50% vs. 76.77%, 1.95 g/L/h vs. 1.71 g/L/h). Moreover, we conducted fed‐batch fermentation for ethanol production using sugarcane juice in 5 L bioreactors and employing the optimized media and engineered strain. The results showed that maximum ethanol titer of 81.59 g/L and productivity of 5.83 g/L/h were achieved. Finally, preliminary techno‐economic assessment demonstrated that our efforts to modify media and strain could reduce the processing cost of ethanol production from sugarcane juice, which provides the feasibility for economic ethanol production in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.