Abstract

We study cosmological dynamics of a generalized Higgs inflation. By expanding the action up to the second and third order in the small perturbations, we study the primordial perturbation and its non-Gaussian distribution. We study the non-Gaussian feature in both the equilateral and orthogonal configurations. By adopting a quartic potential, we perform a numerical analysis on the model's parameter space and compare the results with Planck2015 observational data. To obtain some observational constraint, we focus on the self-coupling and the non-minimal coupling parameters. We show that, in the presence of the non-minimal coupling and the Galileon-like interaction, the self-coupling parameter can be reduced to the order of $10^{-6}$ which is much larger than the value that CMB normalization suggests for this self-coupling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.