Abstract

In order to maintain viability as a future power-generating technology, concentrating solar power (CSP) must reduce its levelized cost of electricity (LCOE). The cost of CSP is assessed with the System Advisor Model (SAM) from the National Renewable Energy Laboratory (NREL). The performance of an integrally geared compressor-expander recuperated recompression cycle with supercritical carbon dioxide (sCO2) as the working fluid is modeled. A comparison of the cycle model to the integrated SAM cycle performance is made. The cycle model incorporates innovative cycle control methods to improve the range of efficiency, including inventory control. The SAM model is modified to accommodate the predicted cycle performance. The ultimate goal of minimizing the LCOE is targeted through multiple approaches, including the cost of the power block, the impact of system scale, the sizing of the thermal system relative to the power block system, the operating approach for changes in ambient temperature and availability of sunlight. Through reduced power block cost and a detailed cycle model, the LCOE is modeled to be 5.98 ȼ/kWh, achieving targeted techno-economic performance. The LCOE of the CSP system is compared to the cost of hybrid solar and fossil-fired systems. An analysis is made on the efficacy of a fossil backup system with CSP and how that relates to potential future costs of carbon dioxide emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.