Abstract

Marine microalga Isochrysis sp. contains omega-3 fatty acids like eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Environmental factors play a major role in PUFA biosynthesis. Hence, the study focused to optimize factors such as temperature, pH, and photoperiod by response surface methodology (RSM). RSM results showed that the model is significant (p ≤ 0.05) with a high correlation coefficient (R 2 = 0.908). The optimum conditions showed that maximum biomass (327 mg/L) at the temperature of 30 °C, pH of 7.5 and 16:8 (Light: Dark cycle), whereas the higher amount of DHA (13.3%) and EPA (9.0%) was observed in the conditions of 18 °C, pH of 7.5 and 16:8 (Light: Dark cycle). The biomass content was directly proportional to the temperature whereas DHA content was inversely proportional. It was revealed that the mRNA expression of EPA and DHA specific desaturases (5Des & 4Des) were significantly elevated in low temperature (20 °C) conditions. The results were highly correlated with the fatty acid profile of Isochrysis sp. grown under low temperature (20 °C) conditions which enhanced the EPA and DHA levels. This study suggests that the temperature is the most influencing factor which can be exploited in the industrial application of DHA and EPA production from Isochrysis sp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.