Abstract
2D organic crystals exhibit efficient charge transport and field-effect characteristics, making them promising candidates for high-performance nanoelectronics. However, the strong Fermi level pinning (FLP) effect and large Schottky barrier between organic semiconductors and metals largely limit device performance. Herein, by carrying out temperature-dependent transport and Kelvin probe force microscopy measurements, it is demonstrated that the introducing of 2D metallic 1T-TaSe2 with matched band-alignment as electrodes for F16 CuPc nanoflake filed-effect transistors leads to enhanced field-effect characteristics, especially lowered Schottky barrier height and contact resistance at the contact and highly efficient charge transport within the channel, which are attributed to the significantly suppressed FLP effect and appropriate band alignment at the nonbonding van der Waals (vdW) hetero-interface. Moreover, by taking advantage of the improved contact behavior with 1T-TaSe2 contact, the optoelectronic performance of F16 CuPc nanoflake-based phototransistor is drastically improved, with a maximum photoresponsivity of 387 AW-1 and detectivity of 3.7×1014 Jones at quite a low Vds of 1V, which is more competitive than those of the reported organic photodetectors and phototransistors. The work provides an avenue to improve the electrical and optoelectronic properties of 2D organic devices by introducing 2D metals with appropriate work function for vdW contacts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.