Abstract

Abstract. China is a highly polluted region, particularly the North China Plain (NCP). However, emission reductions have been occurring in China for about the last 10 years; these reduction measures have been in effect since 2006 for SO2 emissions and since 2010 for NOx emissions. Recent studies have shown a decrease in the NO2 tropospheric column since 2013 that has been attributed to the reduction in NOx emissions. Quantifying how these emission reductions translate regarding ozone concentrations remains unclear due to apparent inconsistencies between surface and satellite observations. In this study, we use the lower tropospheric (LT) columns (surface – 6 km a.s.l. – above sea level) derived from the IASI-A satellite instrument to describe the variability and trend in LT ozone over the NCP for the 2008–2016 period. First, we investigate the IASI retrieval stability and robustness based on the influence of atmospheric conditions (thermal conditions and aerosol loading) and retrieval sensitivity changes. We compare IASI-A observations with the independent IASI-B instrument aboard the Metop-B satellite as well as comparing them with surface and ozonesonde measurements. The conclusion from this evaluation is that the LT ozone columns retrieved from IASI-A are reliable for deriving a trend representative of the lower/free troposphere (3–5 km). Deseasonalized monthly time series of LT ozone show two distinct periods: the first period (2008–2012) with no significant trend (<−0.1 % yr−1) and a second period (2013–2016) with a highly significant negative trend of −1.2 % yr−1, which leads to an overall significant trend of −0.77 % yr−1 for the 2008–2016 period. We explore the dynamical and chemical factors that could explain these negative trends using a multivariate linear regression model and chemistry transport model simulations to evaluate the sensitivity of ozone to the reduction in NOx emissions. The results show that the negative trend observed from IASI for the 2013–2016 period is almost equally attributed to large-scale dynamical processes and emissions reduction, with the large El Niño event in 2015–2016 and the reduction of NOx emissions being the main contributors. For the entire 2008–2016 period, large-scale dynamical processes explain more than half of the observed trend, with a possible reduction of the stratosphere–troposphere exchanges being the main contributor. Large-scale transport and advection, evaluated using CO as a proxy, only contributes to a small part of the trends (∼10 %). However, a residual significant negative trend remains; this shows the limitation of linear regression models regarding their ability to account for nonlinear processes such as ozone chemistry and stresses the need for a detailed evaluation of changes in chemical regimes with the altitude.

Highlights

  • Rapid economic development and urbanization in China over the last 3 decades has resulted in increasing pollutant emissions; this has led to the highest pollutant concentrations in the world, which largely exceed the recommended outdoor air pollutant thresholds from the World Health Organization (WHO)

  • We evaluate the different factors that could impact the stability of the retrieval during the 2008–2016 period over the North China Plain (NCP) and the subsequent reliability of the trends derived from the IASI ozone observations

  • We use the IASI-A instrument to calculate the trends of lower tropospheric (LT) ozone over the NCP during the 9-year period from 2008 to 2016

Read more

Summary

Introduction

Rapid economic development and urbanization in China over the last 3 decades has resulted in increasing pollutant emissions; this has led to the highest pollutant concentrations in the world, which largely exceed the recommended outdoor air pollutant thresholds from the World Health Organization (WHO). A very recent study, based on the China National Environmental Monitoring Center (CNEMC) network, points toward an increase of surface ozone in response to the reduction of NOx emissions in VOCs-limited regions (Lu et al, 2018). Another very recent study undertaken in the framework of the Tropospheric Ozone Assessment Report (TOAR), supported by the IGAC (International Global Atmospheric Chemistry) community, states that ozone has been generally increasing at a global scale in recent years.

IASI satellite data
Time series analysis method
Regression model
Retrieval stability
Comparison with the independent IASI-B ozone observations
Comparison with ozonesonde measurements
Variability and trends derived from IASI-A
Role of NOx emission reduction
Explicative variables
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call