Abstract

Lower Triassic platforms in the Nanpanjiang Basin contain extensive oolites. Interior oolites are stacked in meter-scale cycles arranged into larger coarsening-upward sequences. Oolites thicken toward margins to include grainstones up to 50 m (164 ft) thick and contain giant ooids (up to 1 cm [0.4 in.]) and composite coated grains. Cross-bedding, ripples, and abraded ooids indicate deposition in high-energy shoals. Apparent layer-cake correlation across interiors indicates amalgamation of shoals. Thinner interior lenses represent spillover lobes. Ooids are interpreted to have originally been bimineralic with cortices of radial or micritic fabrics (high-magnesium calcite), alternating with coarse pseudospar or brickwork (originally aragonite). Distorted ooids formed by brittle compaction of micritic cortices around voids are interpreted to have been dissolved aragonite. Abundant potential nuclei indicate that limited supply was not a factor contributing to the large ooid size. High-energy and abnormally high–seawater CaCO3 saturation are interpreted to be causes of the giant ooids. Most previous reports of giant ooids come from the Neoproterozoic, a period of increasing surface-water oxygenation and high CaCO3 saturation caused by a minimal skeletal carbonate precipitation. We interpret similar seawater chemistry in the aftermath of the end-Permian extinction to explain the genesis of the giant ooids in the Early Triassic. The genesis of bimineralic ooids during an Early Triassic period of rapidly increasing pCO2 and low indicates that an increasing Ca/Mg ratio was the primary mechanism driving the change from aragonite to calcite seas. The architecture, textures, and diagenesis of the Lower Triassic oolites of the Nanpanjiang Basin provide useful analogs for coeval reservoirs in Sichuan and the Middle East.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.