Abstract

Abstract. Simultaneous observations were conducted with a Fabry-Perot Interferometer (FPI) at a wavelength of 557.7 nm, an all-sky camera at a wavelength of 557.7 nm, and the European Incoherent Scatter (EISCAT) UHF radar during the Dynamics and Energetics of the Lower Thermosphere in Aurora 2 (DELTA-2) campaign in January 2009. This paper concentrated on two events during periods of pulsating aurora. The lower-thermospheric wind velocity measured with the FPI showed obvious fluctuations in both vertical and horizontal components. Of particular interest is that the location of the fluctuations was found in a darker area that appeared within the pulsating aurora. During the same time period, the EISCAT radar observed sporadic enhancements in the F-region backscatter echo power, which suggests the presence of low-energy electron (1 keV or lower) precipitation coinciding with increase in amplitude of the electromagnetic wave (at the order of 10 Hz or higher). While we have not yet identified the dominant mechanism causing the fluctuations in FPI-derived wind velocity during the pulsating aurora, the frictional heating energy dissipated by the electric-field perturbations may be responsible for the increase in ionospheric thermal energy thus modifying the local wind dynamics in the lower thermosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.