Abstract
Lower semicontinuity results are obtained for multiple integrals of the kind , where μ is a given positive measure on , and the vector-valued function u belongs to the Sobolev space associated with μ . The proofs are essentially based on blow-up techniques, and a significant role is played therein by the concepts of tangent space and of tangent measures to μ . More precisely, for fully general μ , a notion of quasiconvexity for f along the tangent bundle to μ , turns out to be necessary for lower semicontinuity; the sufficiency of such condition is also shown, when μ belongs to a suitable class of rectifiable measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Control, Optimisation and Calculus of Variations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.