Abstract

A new epidemiological scenario involving the oral transmission of Chagas disease, mainly in the Amazon basin, requires innovative control measures. Geospatial analyses of the Trypanosoma cruzi transmission cycle in the wild mammals have been scarce. We applied interpolation and map algebra methods to evaluate mammalian fauna variables related to small wild mammals and the T. cruzi infection pattern in dogs to identify hotspot areas of transmission. We also evaluated the use of dogs as sentinels of epidemiological risk of Chagas disease. Dogs (n = 649) were examined by two parasitological and three distinct serological assays. kDNA amplification was performed in patent infections, although the infection was mainly sub-patent in dogs. The distribution of T. cruzi infection in dogs was not homogeneous, ranging from 11–89% in different localities. The interpolation method and map algebra were employed to test the associations between the lower richness in mammal species and the risk of exposure of dogs to T. cruzi infection. Geospatial analysis indicated that the reduction of the mammal fauna (richness and abundance) was associated with higher parasitemia in small wild mammals and higher exposure of dogs to infection. A Generalized Linear Model (GLM) demonstrated that species richness and positive hemocultures in wild mammals were associated with T. cruzi infection in dogs. Domestic canine infection rates differed significantly between areas with and without Chagas disease outbreaks (Chi-squared test). Geospatial analysis by interpolation and map algebra methods proved to be a powerful tool in the evaluation of areas of T. cruzi transmission. Dog infection was shown to not only be an efficient indicator of reduction of wild mammalian fauna richness but to also act as a signal for the presence of small wild mammals with high parasitemia. The lower richness of small mammal species is discussed as a risk factor for the re-emergence of Chagas disease.

Highlights

  • The causative agent of Chagas disease, Trypanosoma cruzi (Chagas, 1909), is a multi-host parasite capable of infecting almost all tissues of more than one hundred mammal species [1]

  • Acute Chagas Disease outbreaks are increasing in the Amazon Basin as result of oral transmission

  • We applied a geospatial approach using interpolation and map algebra methods to evaluate mammalian fauna variables related to these outbreaks

Read more

Summary

Introduction

The causative agent of Chagas disease, Trypanosoma cruzi (Chagas, 1909), is a multi-host parasite capable of infecting almost all tissues of more than one hundred mammal species [1]. Extradomiciliary vectorial transmission, domiciliary or peridomestic transmission by non-domiciliated vectors and oral transmission by ingestion of food contaminated by feces from infected insects (the principal method of current transmission), pose new challenges. Mainly in the northern part of the Brazil, the number of Chagas disease outbreaks due to the ingestion of food contaminated by infected triatomine feces are increasing [4,5,6]. This is currently considered a new epidemiological scenario, demanding systematic surveillance methods that consider all components of the transmission cycle as well as the landscape and ambient conditions in which transmission is occurring

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call