Abstract
Although gastroesophageal reflux has been recognized as one of the risk factors of nontuberculous mycobacterial pulmonary disease (NTM-PD) progression, the effect of reflux on the lower respiratory tract microbiota has not been studied in detail. We investigated the composition of the lower respiratory tract microbiota in patients with clinically suspected NTM-PD, comparing them based on the presence of reflux. Forty-seven patients suspected of having NTM-PD were enrolled and assigned according to presence of reflux (n = 22) and non- reflux (n = 25). We performed a pepsin ELISA assay to identify the presence of reflux and 16S ribosomal RNA gene amplicon sequencing to evaluate the microbiota in bronchoalveolar lavage fluid. There were no significant differences in the diversity or composition of the lower respiratory microbiota between the NTM-PD and non-NTM-PD groups. Bacterial richness was observed in the non-reflux group than in the reflux group [P = 0.03] and a cluster in the reflux group was observed. The reflux group showed a predominance for Pseudomonas aeruginosa or Staphylococcus aureus among the NTM-PD group and for P. aeruginosa, Haemophilus influenzae, Klebsiella pneumoniae, or Eikenella species among the non-NTM-PD group. The non-reflux groups presented diverse patterns. A linear discriminant analysis and volcano plot demonstrated that P. aeruginosa, H. haemolyticus, Selenomonas artemidis, and Dolosigranulum pigrum were specifically associated with the NTM-PD reflux group, while P. aeruginosa was specifically associated with the non-NTM-PD reflux group. These observations confirm that the lower respiratory microbiota is consistently altered by reflux but not in NTM-PD.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.