Abstract

Before the formation of the Central American Isthmus, there was a Central American Peninsula. Here we show that southern Central America existed as a peninsula as early as 19 Ma, based on new lithostratigraphic, biostratigraphic and strontium chemostratigraphic analyses of the formations exposed along the Gaillard Cut of the Panama Canal. Land mammals found in the Miocene Cucaracha Formation have similar body sizes to conspecific taxa in North America, indicating that there existed a terrestrial connection with North America that allowed gene flow between populations during this time. How long did this peninsula last? The answer hinges on the outcome of a stratigraphic dispute: To wit, is the terrestrial Cucaracha Formation older or younger than the marine La Boca Formation? Previous stratigraphic studies of the Panama Canal Basin have suggested that the Cucaracha Formation lies stratigraphically between the shallow-marine Culebra Formation and the shallow-to-upper-bathyal La Boca Formation, the latter containing the Emperador Limestone. If the La Boca Formation is younger than the Cucaracha Formation, as many think, then the peninsula was short-lived (1–2 m.y.), having been submerged in part by the transgression represented by the overlying La Boca Formation. On the other hand, our data support the view that the La Boca Formation is older than the Cucaracha Formation. Strontium dating shows that the La Boca Formation is older (23.07 to 20.62 Ma) than both the Culebra (19.83–19.12 Ma) and Cucaracha (Hemingfordian to Barstovian North American Land Mammal Ages; 19–14 Ma) formations. The Emperador Limestone is also older (21.24–20.99 Ma) than the Culebra and Cucaracha formations. What has been called the “La Boca Formation” (with the Emperador Limestone), is re-interpreted here as being the lower part of the Culebra Formation. Our new data sets demonstrate that the main axis of the volcanic arc in southern Central America more than likely existed as a peninsula connected to northern Central America and North America for much of the Miocene, which has profound implications for our understanding of the tectonic, climatic, oceanographic and biogeographic history related to the formation of the Isthmus of Panama.

Highlights

  • The paleogeography of Central America has changed profoundly over the past 30 million years (m.y.), from a volcanic arc separated from South America by a wide seaway, to an isthmus that connected North and South America by 3 Ma [1,2,3,4,5]

  • Paleobathymetric and other geologic evidence from depositional basins suggests that southern Central America arose slowly from bathyal depths during the Neogene as a result of the collision between the Panama microplate and the South American plate [3,4,21], suggesting that the volcanic arc during the Miocene consisted of an archipelago of volcanic islands that was slowly uplifting through the Neogene until the ultimate formation of the isthmus [2,3,4,5,22]

  • The topographic, tectonic, and regional geologic evidence strongly suggests that the archipelago stretched from westernmost Costa Rica to the Atrato Valley in Colombia ...’’ most of the evidence suggesting slow uplift of the volcanic arc from bathyal depths is derived from depositional basins that lie peripheral to the main axis of the volcanic arc in southern Central America (Figure 1)

Read more

Summary

Introduction

The paleogeography of Central America has changed profoundly over the past 30 million years (m.y.), from a volcanic arc separated from South America by a wide seaway, to an isthmus that connected North and South America by 3 Ma [1,2,3,4,5]. Paleobathymetric and other geologic evidence from depositional basins suggests that southern Central America arose slowly from bathyal depths during the Neogene as a result of the collision between the Panama microplate and the South American plate [3,4,21], suggesting that the volcanic arc during the Miocene consisted of an archipelago of volcanic islands that was slowly uplifting through the Neogene until the ultimate formation of the isthmus [2,3,4,5,22]. The topographic, tectonic, and regional geologic evidence strongly suggests that the archipelago stretched from westernmost Costa Rica to the Atrato Valley in Colombia ...’’ most of the evidence suggesting slow uplift of the volcanic arc from bathyal depths is derived from depositional basins that lie peripheral to the main axis of the volcanic arc in southern Central America (Figure 1)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call