Abstract

Lower extremity powered exoskeletons (LEPE) are an emerging technology that assists people with lower-limb paralysis. LEPE for people with complete spinal cord injury walk at very slow speeds, below 0.5m/s. For the able-bodied population, very slow walking uses different neuromuscular, locomotor, postural, and dynamic balance control. Speed dependent kinetic and kinematic regression equations in the literature could be used for very slow walking LEPE trajectory scaling; however, kinematic and kinetic information at walking speeds below 0.5 m/s is lacking. Scaling LEPE trajectories using current reference equations may be inaccurate because these equations were produced from faster than real-world LEPE walking speeds. An improved understanding of how able-bodied people biomechanically adapt to very slow walking will provide LEPE developers with more accurate models to predict and scale LEPE gait trajectories. Full body motion capture data were collected from 30 healthy adults while walking on an instrumented self-paced treadmill, within a CAREN-Extended virtual reality environment. Kinematic and kinetic data were collected for 0.2 m/s—0.8 m/s, and self-selected walking speed. Thirty-three common sagittal kinematic and kinetic gait parameters were identified from motion capture data and inverse dynamics. Gait parameter relationships to walking speed, cadence, and stride length were determined with linear and quadratic (second and third order) regression. For parameters with a non-linear relationship with speed, cadence, or stride-length, linear regressions were used to determine if a consistent inflection occurred for faster and slower walking speeds. Group mean equations were applied to each participant’s data to determine the best performing equations for calculating important peak sagittal kinematic and kinetic gait parameters. Quadratic models based on walking speed had the strongest correlations with sagittal kinematic and kinetic gait parameters, with kinetic parameters having the better results. The lack of a consistent inflection point indicated that the kinematic and kinetic gait strategies did not change at very slow gait speeds. This research showed stronger associations with speed and gait parameters then previous studies, and provided more accurate regression equations for gait parameters at very slow walking speeds that can be used for LEPE joint trajectory development.

Highlights

  • Motor adaptation to different gait speeds are relevant to lower extremity powered exoskeletons (LEPE) since predefined gait control strategies are typically used for persons with complete paraplegia [1]

  • Since gait speed is the product of cadence and stride length, we examined these three stride parameters for their relationship with sagittal kinematic and kinetic gait parameters

  • Quadratic models based on walking speed had the strongest correlations with most peak sagittal kinematic and kinetic gait parameters, with kinetic parameters having the better results

Read more

Summary

Introduction

Motor adaptation to different gait speeds are relevant to lower extremity powered exoskeletons (LEPE) since predefined gait control strategies are typically used for persons with complete paraplegia [1]. Despite a wealth of biomechanics literature on a range of gait speeds [2,18,19,20,21,22,23,24,25,26,27], the slowest walking speed in studies that predicted kinematic and kinetic parameters was 0.5 m/s, and averaged greater than 0.9 m/s. From some of these works, kinematic peak sagittal parameters were found to be positively correlated with gait speed, but that correlation coefficients from simple linear (R2

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.