Abstract

The use of an agonist-antagonist muscle pair for myoelectric control of a transtibial prosthesis requires normalizing the myoelectric signals and identifying their co-contraction signature. Extensive literature has explored the relationship between body posture and lower-limb muscle activation level using surface electromyography (EMG), but it is unknown how these relationships hold after amputation. Using a virtual tracking task, this study compares the effect of three different calibration postures (seated, standing, dynamic) on user tracking ability while in two tracking postures (seated, standing) for 18 able-bodied (AB) subjects and 9 subjects with transtibial (TT) amputation. As expected, AB subjects produced statistically significant differences in muscle activation for gastrocnemius (GAS) when seated vs. standing during calibration (p = 8.8e-4), but not for tibialis anterior (TA) (p = 0.76). TT subjects, however, showed no significant differences in GAS or TA between seated and standing (p = 0.90, 0.60 respectively). It was also determined that normalizing EMG by the global maximum signal observed (standard in biomechanic analysis) is undesirable for myoelectric control. For best general results with this framework, calibration in both seated and dynamic postures is recommended, taking the normalization information from the seated posture and the narrowest co-contraction slopes from the two.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.