Abstract

The existing surface electromyography-based pattern recognition system (sEMG-PRS) exhibits limited generalizability in practical applications. In this paper, we propose a stacked weighted random forest (SWRF) algorithm to enhance the long-term usability and user adaptability of sEMG-PRS. First, the weighted random forest (WRF) is proposed to address the issue of imbalanced performance in standard random forests (RF) caused by randomness in sampling and feature selection. Then, the stacking is employed to further enhance the generalizability of WRF. Specifically, RF is utilized as the base learner, while WRF serves as the meta-leaning layer algorithm. The SWRF is evaluated against classical classification algorithms in both online experiments and offline datasets. The offline experiments indicate that the SWRF achieves an average classification accuracy of 89.06%, outperforming RF, WRF, long short-term memory (LSTM), and support vector machine (SVM). The online experiments indicate that SWRF outperforms the aforementioned algorithms regarding long-term usability and user adaptability. We believe that our method has significant potential for practical application in sEMG-PRS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.