Abstract

[1] Many regions of the world are dependent on snow cover for frost protection and summer water supplies. These same regions are predominantly forested, with forests highly vulnerable to change. Here we combine a meta-analysis of observational studies across the globe with modeling to show that in regions with average December-January-February (DJF) temperatures greater than −1°C, forest cover reduces snow duration by 1–2 weeks compared to adjacent open areas. This occurs because the dominant effect of forest cover shifts from slowing snowmelt by shading the snow and blocking the wind to accelerating snowmelt from increasing longwave radiation. In many locations, midwinter melt removes forest snow before solar radiation is great enough for forest shading to matter, and with warming temperatures, midwinter melt is likely to become more widespread. This temperature-effect in forest-snow-climate interactions must be considered in representations of the combined ecohydrological system and can be used advantageously in forest management strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.