Abstract

Objective: Although it is widely reported that high-heeled changes gait pattern in terms of motions and forces throughout the body, the biomechanics while high-heeled squatting has not been examined. This study aimed to explore the acute effects of different heel heights on muscle morphology and plantar loading during high-heeled squatting. Methods: Fourteen healthy females performed squats on high-heeled shoes with different heights: flat (0.8 cm), moderate (4.0 cm), and high (7.0 cm). Muscle thickness and pennation angle of selected lower limb muscles were measured by ultrasound imaging. Plantar pressure distribution and COP trajectory during an entire squatting motion were recorded. Results: As the heel height increased, the average and peak pressure consistently increased in the heel and hallux regions, while reversely changed in MF and LF regions. In addition, the selected lower limb muscles except for the lateral gastrocnemius and vastus medialis showed significant differences in muscle thickness and pennation angle between heel heights. Conclusion: The findings of this study indicate that increased heel height would enhance the immediate effects on muscle morphology as well as plantar pressure redistribution potentially causing lower limb muscle fatigue and injuries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call