Abstract

Controlled trunk motion is crucial for balance and stability during walking. Persons with lower extremity amputation often exhibit abnormal trunk motion, yet underlying mechanisms are not well understood nor have optimal clinical interventions been established. The aim of this work was to characterize associations between altered lower extremity joint moments and altered trunk dynamics in persons with unilateral, transtibial amputation (TTA). Full-body gait data were collected from 10 persons with TTA and 10 uninjured persons walking overground (~1.4 m/s). Experimentally-measured trunk angular accelerations were decomposed into constituent accelerations caused by net joint moments throughout the body using an induced acceleration analysis. Results showed persons with TTA had similar ankle moment magnitude relative to uninjured persons (P > 0.05), but greater trunk angular acceleration induced by the prosthetic ankle which acted to lean the trunk ipsilaterally (P = 0.003). Additionally, persons with TTA had a reduced knee extensor moment relative to uninjured persons (P < 0.001), resulting in lesser sagittal and frontal induced trunk angular accelerations (P < 0.001). These data indicate kinetic compensations at joints other than the lumbar and hip contribute to altered trunk dynamics in persons with a unilateral TTA. Findings may inform development of new clinical strategies to modify problematic trunk motion.

Highlights

  • Controlled trunk motion is crucial for balance and stability during walking

  • Given that lower extremity net joint moments contribute to trunk angular accelerations in uninjured persons[5,6], studies are warranted that assess how deviations in lower extremity moments contribute to altered trunk motion in persons with a unilateral transtibial amputation (TTA)

  • While conclusions cannot be drawn at the muscle group level via our net moment analysis, our results suggest that a decreased net hip abductor moment is associated with lesser deceleration of ipsilateral trunk lean in persons with a unilateral TTA

Read more

Summary

Introduction

Controlled trunk motion is crucial for balance and stability during walking. Persons with lower extremity amputation often exhibit abnormal trunk motion, yet underlying mechanisms are not well understood nor have optimal clinical interventions been established. The aim of this work was to characterize associations between altered lower extremity joint moments and altered trunk dynamics in persons with unilateral, transtibial amputation (TTA). Persons with TTA had a reduced knee extensor moment relative to uninjured persons (P < 0.001), resulting in lesser sagittal and frontal induced trunk angular accelerations (P < 0.001). These data indicate kinetic compensations at joints other than the lumbar and hip contribute to altered trunk dynamics in persons with a unilateral TTA. Among uninjured persons, induced acceleration (IA) analyses have been used to decompose net trunk angular accelerations into constituent accelerations corresponding to net joint moments[5], and underlying muscle forces[6], throughout the whole body. Given that lower extremity net joint moments contribute to trunk angular accelerations in uninjured persons[5,6], studies are warranted that assess how deviations in lower extremity moments contribute to altered trunk motion in persons with a unilateral TTA

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call