Abstract
Observation of complex whole body movements suggests that the nervous system coordinates multiple operational subsystems using some type of hierarchical control. When comparing two forward translating tasks performed with and without backward angular impulse, we have learned that both trunk-leg coordination and reaction force-time characteristics are significantly different between tasks. This led us to hypothesize that differences in trunk-leg coordination and reaction force generation would induce between-task differences in the control of the lower extremity joints during impulse generation phase of the tasks. Eight highly skilled performers executed a series of forward jumps with and without backward rotation (reverse somersault and reverse timer, respectively). Sagittal plane kinematics, reaction forces, and electromyograms of lower extremity muscles were acquired during the take-off phase of both tasks. Lower extremity joint kinetics were calculated using inverse dynamics. The results demonstrated between-task differences in the relative angles between the lower extremity segments and the net joint forces/reaction force and the joint angular velocity profiles. Significantly less knee extensor net joint moments and net joint moment work and greater hip extensor net joint moments and net joint moment work were observed during the push interval of the reverse somersault as compared to the reverse timer. Between-task differences in lower extremity joint kinetics were regulated by selectively activating the bi-articular muscles crossing the knee and hip. These results indicate that between-task differences in the control of the center of mass relative to the reaction force alters control and dynamics of the multijoint lower extremity subsystem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.