Abstract

Perfect spin filtering is an important issue in spintronics. Although such spin filtering showing giant magnetoresistance was suggested using graphene nanoribbons (GNRs) on both ends of which strong magnetic fields were applied, electric field controlled spin filtering is more interesting due to much easier precise control with much less energy consumption. Here we study the magnetic/nonmagnetic behaviors of zigzag GNRs (zGNRs) under a transverse electric field and by edge functionalization. Employing density functional theory (DFT), we show that the threshold electric field to attain either a half-metallic or nonmagnetic feature is drastically reduced by introducing proper functional groups to the edges of the zGNR. From the current-voltage characteristics of the edge-modified zGNR under an in-plane transverse electric field, we find a remarkable perfect spin filtering feature, which can be utilized for a molecular spintronic device. Alteration of magnetic properties by tuning the transverse electric field would be a promising way to construct magnetic/nonmagnetic switches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.