Abstract
Efficient global optimization is a widely used method for optimizing expensive black-box functions. In this paper, we study the worst-case oracle complexity of the efficient global optimization problem. In contrast to existing kernel-specific results, we derive a unified lower bound for the oracle complexity of efficient global optimization in terms of the metric entropy of a ball in its corresponding reproducing kernel Hilbert space. Moreover, we show that this lower bound nearly matches the upper bound attained by non-adaptive search algorithms, for the commonly used squared exponential kernel and the Matérn kernel with a large smoothness parameter ν\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ u $$\\end{document}. This matching is up to a replacement of d/2 by d and a logarithmic term logRϵ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\log \\frac{R}{\\epsilon }$$\\end{document}, where d is the dimension of input space, R is the upper bound for the norm of the unknown black-box function, and ϵ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\epsilon $$\\end{document} is the desired accuracy. That is to say, our lower bound is nearly optimal for these kernels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.