Abstract

A multiple bus network (MBN) connects a set of processors via set of buses. Two important parameters of an MBN are its loading (largest number of connections on a bus) and its degree (largest number of connections to a processor). These parameters determine the cost, speed, and implementability of the MBN. The smallest degree that any useful MBN can have is 2. In this paper, we study the relationship between running time, degree, and loading of degree-2 MBNs running a fundamental class of algorithms called binary tree algorithms. (A binary tree algorithm reduces 2/sup n/ inputs at the leaves of a balanced-binary tree to a single result at the root of the tree.) Specifically, we establish a nontrivial /spl Omega/(n/logn) loading lower bound for any degree-2 MBN running a 2/sup n/ input binary tree algorithm optimally in n steps. We show that this bound does not hold if the restriction on the degree or the running time is relaxed. That is, optimal-time, degree-3, constant loading MBNs and suboptimal-time, degree-2, constant loading MBNs exist for binary tree algorithms. We also derive a lower bound on the additional time (beyond the optimal) needed to run binary tree algorithms on a degree-2, loading-L MBN, for any L>3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.