Abstract

We present a general approach to the problem of determining tight asymptotic lower bounds for generalized central moments of the optimal alignment score of two independent sequences of i.i.d. random variables. At first, these are obtained under a main assumption for which sufficient conditions are provided. When the main assumption fails, we nevertheless develop a “uniform approximation” method leading to asymptotic lower bounds. Our general results are then applied to the length of the longest common subsequences of binary strings, in which case asymptotic lower bounds are obtained for the moments and the exponential moments of the optimal score. As a by-product, a local upper bound on the rate function associated with the length of the longest common subsequences of two binary strings is also obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.