Abstract

An input-constrained channel S is defined as the set of words generated by a finite labeled directed graph. It is shown that every finite-state encoder with finite anticipation (i.e., with finite decoding delay) for S can be obtained through state-splitting rounds applied to some deterministic graph presentation of S, followed by a reduction of equivalent states. Furthermore, each splitting round can be restricted to follow a certain prescribed structure. This result, in turn, provides a necessary and sufficient condition on the existence of finite-state encoders for S with a given rate p:q and a given anticipation a. A second condition is derived on the existence of such encoders; this condition is only necessary, but it applies to every deterministic graph presentation of S. Based on these two conditions, lower bounds are derived on the anticipation of finite-state encoders. Those lower bounds improve on previously known bounds and, in particular, they are shown to be tight for the common rates used for the (1,7)-runlength-limited (RLL) and (2,7)-RLL constraints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.