Abstract

This paper studies lossy coding of discrete memoryless sources and derives new asymptotic lower bounds on the rate of optimal fixed-length codes. Both average and excess-probability distortion constraints are studied. We show that in each case the rate of optimal codes is lower bounded by R(D) + R 2 / √ n + (log n)/(2n) + R 4 /n + o(1) where n is the block length, R(D) is Shannon's rate-distortion function, R 2 is the second-order coding rate, and R 4 a constant that is explicitly identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.