Abstract
It is known that the eigenfunctions of a random Schrödinger operator on a strip decay exponentially, and that the rate of decay is not slower than prescribed by the slowest Lyapunov exponent. A variery of heuristic arguments suggest that no eigenfunction can decay faster than at this rate. We make a step towards this conjecture (in the case when the distribution of the potential is regular enough) by showing that, for each eigenfunction, the rate of exponential decay along any subsequence is strictly slower than the fastest Lyapunov exponent, and that there exists a subsequence along which it is equal to the slowest Lyapunov exponent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.