Abstract

In the present work the problem of finding lower bounds for the zeros of an analytic function is reduced by a Hilbert space technique to the well-known problem of finding upper bounds for the zeros of a polynomial. Several lower bounds for all the zeros of analytic functions are thus found, which are always better than the well-known Carmichael-Mason inequality. Several numerical examples are also given and a comparison of our bounds with well-known bounds in literature and/or the exact solution is made.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.