Abstract

Abstract This paper studies the complexity of languages of finite words using automata theory. To go beyond the class of regular languages, we consider infinite automata and the notion of state complexity defined by Karp. Motivated by the seminal paper of Rabin from 1963 introducing probabilistic automata, we study the (deterministic) state complexity of probabilistic languages and prove that probabilistic languages can have arbitrarily high deterministic state complexity. We then look at alternating automata as introduced by Chandra, Kozen and Stockmeyer: such machines run independent computations on the word and gather their answers through boolean combinations. We devise a lower bound technique relying on boundedly generated lattices of languages, and give two applications of this technique. The first is a hierarchy theorem, stating that there are languages of arbitrarily high polynomial alternating state complexity, and the second is a linear lower bound on the alternating state complexity of the prime numbers written in binary. This second result strengthens a result of Hartmanis and Shank from 1968, which implies an exponentially worse lower bound for the same model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.