Abstract

The Euclidean Minimum Spanning Tree problem is to decide whether a given graph G = ( P , E ) on a set of points in the two-dimensional plane is a minimum spanning tree with respect to the Euclidean distance. Czumaj et al. [A. Czumaj, C. Sohler, M. Ziegler, Testing Euclidean Minimum Spanning Trees in the plane, Unpublished, Part II of ESA 2000 paper, downloaded from http://web.njit.edu/~czumaj/] gave a 1-sided-error non-adaptive property-tester for this task of query complexity O ˜ ( n ) . We show that every non-adaptive (not necessarily 1-sided-error) property-tester for this task has a query complexity of Ω ( n ) , implying that the test in [A. Czumaj, C. Sohler, M. Ziegler, Testing Euclidean Minimum Spanning Trees in the plane, Unpublished, Part II of ESA 2000 paper, downloaded from http://web.njit.edu/~czumaj/] is of asymptotically optimal complexity. We further prove that every adaptive property-tester has query complexity of Ω ( n 1 / 3 ) . Those lower bounds hold even when the input graph is promised to be a bounded degree tree.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.