Abstract
Ramsey’s theorem, concerning the guarantee of certain monochromatic patterns in large enough edge-coloured complete graphs, is a fundamental result in combinatorial mathematics. In this work, we highlight the connection between this abstract setting and a statistical physics problem. Specifically, we design a classical Hamiltonian that favours configurations in a way to establish lower bounds on Ramsey numbers. As a proof of principle we then use Monte Carlo methods to obtain such lower bounds, finding rough agreement with known literature values in a few cases we investigated. We discuss numerical limitations of our approach and indicate a path towards the treatment of larger graph sizes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.