Abstract
For the $$\mathcal{NP}$$ -hard problem of scheduling n jobs in a two-machine flow shop so as to minimize the total completion time, we present two equivalent lower bounds that are computable in polynomial time. We formulate the problem by the use of positional completion time variables, which results in two integer linear programming formulations with O(n 2) variables and O(n) constraints. Solving the linear programming relaxation renders a very strong lower bound with an average relative gap of only 0.8% for instances with more than 30 jobs. We further show that relaxing the formulation in terms of positional completion times by applying Lagrangean relaxation yields the same bound, no matter which set of constraints we relax.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.