Abstract

In this paper, we provide a family of bounds for the rate at which the functions of many inputs can be computed in-network on general topologies. Going beyond simple symmetric functions where the output is invariant to the permutation of the operands, e.g., average, parity, we describe an algorithm that is analyzed to provide throughput bounds (both lower and upper) for the general functions. In particular, we analyze our algorithm when the function to be computed is given as a binary tree schema. Our lower bounds depend on schema parameters like the number of operands and graph parameters like the second largest eigenvalue of the transition matrix of simple random walk on network graph, the maximum and minimum degree of any node in the network. The lower bounding technique that we have used is based on the network flows and can capture general multi-commodity flow settings. Our proposed algorithm uses the well-known simple random walk on a network as its basic primitive for routing. We show that the lower bound obtained on the rate of computation is tight for the complete network topology, the hypercube and the star topology. We also present an upper bound on the expected latency of any data operand in terms of the height of schema, well-studied random walk parameter like the hitting time, and the relative distance from the critical data rate. For the computation time of symmetric functions on the random geometric graph under the gossip model, our approach achieves an order-optimal \(\widetilde{O}(n)\) time despite enforcing a binary tree schema for function computation. In general, Big-O notation represents an upper bound and \(\widetilde{O}\) hides \(\text {poly}\log n\) factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.