Abstract

We establish Euclidean-type lower bounds for the codimen\\-sion-1 Hausdorff measure of sets that separate points in doubling and linearly locally contractible metric manifolds. This gives a quantitative topological isoperimetric inequality in the setting of metric manifolds, in the sense that lower bounds for the codimension-1 measure of a set depend not on some notion of filling or volume but rather on in-radii of complementary components. As a consequence, we show that balls in a closed, connected, doubling, and linearly locally contractible metric $n$-manifold $(M,d)$ with radius $0 < r \leq \mathrm {diam}(M)$ have $n$-dimensional Hausdorff measure at least\~$c \cdot r^n$, where $c>0$ depends only on $n$ and on the doubling and linear local contractibility constants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.