Abstract
We study algorithms for approximation of the mild solution of stochastic heat equations on the spatial domain ]0, 1[d. The error of an algorithm is defined in L2-sense. We derive lower bounds for the error of every algorithm that uses a total of N evaluations of one-dimensional components of the driving Wiener process W. For equations with additive noise we derive matching upper bounds and we construct asymptotically optimal algorithms. The error bounds depend on N and d, and on the decay of eigenvalues of the covariance of W in the case of nuclear noise. In the latter case the use of nonuniform time discretizations is crucial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.