Abstract
Recently, interesting 4-D Lorentz violating models have been proposed, in which all particles have a common maximum velocity $c$, but gravity propagates (in the preferred frame) with a different maximum velocity $c_g \neq c$. We show that the case $c_g < c$ is very tightly constrained by the observation of the highest energy cosmic rays. Assuming a galactic origin for the cosmic rays gives a conservative bound of $c-c_g < 2 \times 10^{-15} c$; if the cosmic rays have an extragalactic origin the bound is orders of magnitude tighter, of order $c-c_g < 2 \times 10^{-19} c$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.