Abstract

In this paper, we study the sparse covariance matrix estimation problem in the local differential privacy model, and give a non-trivial lower bound on the non-interactive private minimax risk in the metric of squared spectral norm. We show that the lower bound is actually tight, as it matches a previous upper bound. Our main technique for achieving this lower bound is a general framework, called General Private Assouad Lemma, which is a considerable generalization of the previous private Assouad lemma and can be used as a general method for bounding the private minimax risk of matrix-related estimation problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.