Abstract

We revisit the following lower bound methods for the size of a nondeterministic finite automaton: the fooling set technique, the extended fooling set technique, and the biclique edge cover technique, presenting these methods in terms of quotients and atoms of regular languages. Although the lower bounds obtained by these methods are not necessarily tight, some classes of languages for which tight bounds can be achieved, are known. We show that languages with maximal reversal complexity belong to the class of languages for which the fooling set technique provides a tight bound. We also show that the extended fooling set technique is tight for a subclass of unary cyclic languages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.