Abstract

Rapid alterations of gravitational stress during high-performance aircraft push-pull manoeuvres induce dramatic shifts in volume and pressure within the circulation system, which may result in loss of consciousness due to the rapid and significant reduction in cerebral perfusion. There are still no specific and effective countermeasures so far. We found that lower body negative pressure (LBNP), applied prior to and during -Gz and released at the subsequent transition to +Gz, could effectively counteract gravitational haemodynamic stress induced by a simulated push-pull manoeuvre and improve cerebral diastolic perfusion in human subjects. We developed a LBNP strategy that effectively protects cerebral perfusion at rapid -Gz to +Gz transitions via improving cerebral blood flow and blood pressure during push-pull manoeuvres and highlight the importance of the timing of the intervention. Our findings provide a systemic link of integrated responses between the peripheral and cerebral haemodynamic changes during push-pull manoeuvres. The acute negative (-Gz) to positive (+Gz) gravity stress during high-performance aircraft push-pull manoeuvres dramatically reduces transient cerebral perfusion, which may lead to loss of vision or even consciousness. The aim of this study was to explore a specific and effective counteractive strategy. Twenty-three healthy young male volunteers (age 21±1year) were subjected to tilting-simulated push-pull manoeuvres. Lower body negative pressure (LBNP) of -40mmHg was applied prior to and during -Gz stress (-0.50 or -0.87Gz) and released at the subsequent transition to +1.00Gz stress. Beat-to-beat cerebral and systemic haemodynamics were continuously recorded during the simulated push-pull manoeuvre in LBNP bouts and corresponding control bouts. During the rapid gravitational transition from -Gz to +Gz, the mean cerebral blood flow velocity decreased significantly in control bouts, while it increased in LBNP bouts (control vs. LBNP bouts, -6.6±4.6 vs. 5.1±6.8cms-1 for -0.50Gz, and -7.4±4.8 vs. 3.4±4.6cms-1 for -0.87 Gz, P<0.01), which was attributed mainly to the elevation of diastolic flow. The LBNP bouts showed much smaller reduction of mean arterial blood pressure at the brain level than control bouts (control bouts vs. LBNP bouts, -38±12 vs. -23±10mmHg for -0.50 to +1.00Gz, and -62±16 vs. -43±11mmHg for -0.87 to +1.00Gz, P<0.01). LBNP applied at -Gz and released at subsequent +Gz had biphasic counteractive effects against the gravitational responses to the push-pull manoeuvre. These data demonstrate that this LBNP strategy could effectively protect cerebral perfusion with dominant improvement of diastolic flow during push-pull manoeuvres.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call