Abstract

In this paper, we proposed and investigated the amplifier-and-forward (AF) time switching relaying half-duplex with impact the eavesdropper. In this system model, the source (S) and the destination (D) communicate with each other via a helping of the relay (R) in the presence of the eavesdropper (E). The R harvests energy from the S and uses this energy for information transferring to the D. For deriving the system performance, the lower and upper bound system intercept probability (IP) is proposed and demonstrated. Furthermore, the Monte Carlo simulation is provided to justify the correctness of the mathematical, analytical expression of the lower and upper bound IP. The results show that the analytical and the simulation curves are the same in connection with the primary system parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.