Abstract

The family of rare earth chalcogenides $ARECh_{2}$ (A = alkali or monovalent ions, RE = rare earth, and Ch = O, S, Se, and Te) appears as an inspiring playground for studying quantum spin liquids (QSL). The crucial low-energy spin dynamics remain to be uncovered. By employing muon spin relaxation ($\mu$SR) and zero-field (ZF) AC susceptibility down to 50 mK, we are able to identify the gapless QSL in $NaYbSe_{2}$, a representative member with an effective spin-1/2, and explore its unusual spin dynamics. The ZF $\mu$SR experiments unambiguously rule out spin ordering or freezing in $NaYbSe_{2}$ down to 50 mK, two orders of magnitude smaller than the exchange coupling energies. The spin relaxation rate, $\lambda$, approaches a constant below 0.3 K, indicating finite spin excitations featured by a gapless QSL ground state. This is consistently supported by our AC susceptibility measurements. The careful analysis of the longitudinal field (LF) $\mu$SR spectra reveals a strong spatial correlation and a temporal correlation in the spin-disordered ground state, highlighting the unique feature of spin entanglement in the QSL state. The observations allow us to establish an experimental H-T phase diagram. The study offers insight into the rich and exotic magnetism of the rare earth family.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.