Abstract

We study constraints on the general gauge mediation (GGM) parameter space arising from low-energy observables in the MSSM and NMSSM. Specifically, we look at the dependence of the spectra and observables on the correlation function ratios in the hidden sector where supersymmetry is presumably broken. Since these ratios are not a priori constrained by theory, current results from the muon anomalous magnetic moment and flavor physics can potentially provide valuable intuition about allowed possibilities. It is found that the muon anomalous magnetic moment and flavor-physics observables place significant constraints on the GGM parameter space with distinct dependences on the hidden sector correlation function ratios. The particle spectra arising in GGM, with the possibility of different correlation function ratios, is contrasted with common intuition from regular gauge mediation (RGM) schemes (where the ratios are always fixed). Comments are made on precision gauge coupling unification, topography of the NLSP space, correlations of the muon anomalous magnetic moment with other observables, and approximate scaling relations in sparticle masses with respect to the high-scale correlation function ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call