Abstract

The 2H(d,p)3H and 2H(d,n)3He reactions have been recently investigated from Edd=1.5 MeV down to 2 keV, by means of the Trojan Horse Method (THM) applied to the Quasi Free 3He+d interaction at 18 MeV [1]. The knowledge of their fusion cross section at low energies is of interest for pure and applied physics. Both reactions belong to the network of processes to fuel the first inertial confinement fusion reactors in the range of kT= 1 to 30 keV. These energies overlap with the burning temperatures of deuterium in the Pre-main sequence of stellar evolution. They are key processes in the Standard Big Bang Nucleosynthesis (SBBN), in an energy region from 50 to 300 keV and experimental data at least up to 1 MeV are required for an accurate calculation of the reaction rate. Providing experimental data for both channels from a single experiment and over the entire energy range of interest is crucial for an accurate calculation of the reaction rates. This is what has been obtained from the present Trojan Horse (TH) investigation with new reaction rates which deviate by more than 20% from available direct data. This represents also the first pioneering experiment in quasi free regime where the charged spectator is detected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call