Abstract

This study explored the molecular mechanism behind the protective effects from low-dose lipopolysaccharide (LPS) on an in-vitro model of spinal cord injury (SCI). For this, PC12 cells were treated with different concentrations of LPS and the cell counting kit-8 assay was used to measure the toxicity of LPS to the cells. Next, we used immunofluorescence to measure nuclear translocation of Nrf2 in PC12 cells. PC12 cells were then treated with IGF-1 (PI3K agonist) and LY294002 (PI3K inhibitor). An in-vitro model of SCI was then established via oxygen-glucose deprivation/reoxygenation. Rates of apoptosis were measured using flow cytometry and the TUNEL assay. Low-dose LPS increased the expression levels of Nrf2, p-PI3K/PI3K, and p-AKT/AKT, and facilitated nuclear translocation of Nrf2. The activation of PI3K-AKT signaling by IGF-1 significantly increased the expression of Nrf2, whereas inhibition of PI3K-AKT signaling significantly decreased the expression of Nrf2. Low-dose LPS reduced the apoptotic ratio of PC12 cells, decreased the expression levels of caspase 3 and caspase 9, and increased the expression levels of HO-1, NQO1, and γ-GCS. Low-dose LPS also reduced the rate of apoptosis and oxidative stress by activating the PI3K-AKT-Nrf2 signaling pathway. Collectively, the results indicate that PI3K-AKT-Nrf2 signaling participates in the protective effects from low-dose LPS in an in-vitro PC12 cell model of SCI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.