Abstract

Ataxia telangiectasia is a genetic instability syndrome characterized by neurodegeneration, immunodeficiency, severe bronchial complications, hypersensitivity to radiotherapy and an elevated risk of malignancies. Repopulation with ATM-competent bone marrow-derived cells (BMDCs) significantly prolonged the lifespan and improved the phenotype of Atm-deficient mice. The aim of the present study was to promote BMDC engraftment after bone marrow transplantation using low-dose irradiation (IR) as a co-conditioning strategy. Atm-deficient mice were transplanted with green fluorescent protein-expressing, ATM-positive BMDCs using a clinically relevant non-myeloablative host-conditioning regimen together with TBI (0.2-2.0 Gy). IR significantly improved the engraftment of BMDCs into the bone marrow, blood, spleen and lung in a dose-dependent manner, but not into the cerebellum. However, with increasing doses, IR lethality increased even after low-dose IR. Analysis of the bronchoalveolar lavage fluid and lung histochemistry revealed a significant enhancement in the number of inflammatory cells and oxidative damage. A delay in the resolution of γ-H2AX-expression points to an insufficient double-strand break repair capacity following IR with 0.5 Gy in Atm-deficient splenocytes. Our results demonstrate that even low-dose IR results in ATM activation. In the absence of ATM, low-dose IR leads to increased inflammation, oxidative stress and lethality in the Atm-deficient mouse model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.