Abstract

Traumatic brain injury (TBI) and stroke share a common pathophysiology that worsens over time due to secondary tissue injury caused by sustained inflammatory response. However, studies on pharmacological interventions targeting the complex secondary injury cascade have failed to show efficacy. Here, we demonstrated that low-dose ionizing radiation (LDIR) reduced lesion size and reversed motor deficits after TBI and photothrombotic stroke. Magnetic resonance imaging demonstrated significant reduction of infarct volume in LDIR-treated mice after stroke. Systems-level transcriptomic analysis showed that genes upregulated in LDIR-treated stoke mice were enriched in pathways associated with inflammatory and immune response involving microglia. LDIR induced upregulation of anti-inflammatory- and phagocytosis-related genes, and downregulation of key pro-inflammatory cytokine production. These findings were validated by live-cell assays, in which microglia exhibited higher chemotactic and phagocytic capacities after LDIR. We observed substantial microglial clustering at the injury site, glial scar clearance and reversal of motor deficits after stroke. Cortical microglia/macrophages depletion completely abolished the beneficial effect of LDIR on motor function recovery in stroke mice. LDIR promoted axonal projections (brain rewiring) in motor cortex and recovery of brain activity detected by electroencephalography recordings months after stroke. LDIR treatment delayed by 8 h post-injury still maintained full therapeutic effects on motor recovery, indicating that LDIR is a promising therapeutic strategy for TBI and stroke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.