Abstract

BackgroundMelanogenesis is the process of melanin maturation which not only protects skin from UV radiation but also plays an important role in antigenicity of melanomas. Imiquimod (IMQ) is a toll-like receptor 7 (TLR7) agonist that exhibits antiviral and anticancer activity. ObjectiveTo explore whether IMQ could induce melanogenesis in melanoma cells. MethodsThe mouse melanoma cell line B16F10, the mouse immortalized melanocyte Melan-A, and human melanoma cell lines MNT-1, C32 and A375 were utilized in this study. The pigmented level was observed by the centrifuged cell pellet. The intracellular and extracellular melanin levels were examined in the absorbance in NaOH-extracted cell lysate and cell-cultured medium, respectively. The expression of melanogenesis related proteins was examined by immunoblotting. The intracellular cyclic AMP amount was evaluated by the cAMP Glo assay kit. The activity of phosphodiesterase 4B (PDE4B) was investigated by CREB reporter assay with overexpressed PDE4B or not. ResultsWe demonstrated that a low dose of IMQ could trigger melanogenesis in B16F10 cells. IMQ induced microphthalmia-associated transcription factor (MITF) nuclear translocation, upregulated the expression of melanogenesis-related proteins, increased tyrosinase (TYR) activity, and led to pigmentation in B16F10 cells. Next, we found that IMQ-induced melanogenesis was activated by excessive intracellular cAMP accumulation, which was regulated through IMQ-mediated PDE4B inhibition. Finally, IMQ-induced ROS production was found to be involved in melanogenesis by its control of PDE4B activity. ConclusionsLow dose of IMQ could activate melanogenesis through the ROS/PDE4B/PKA pathway in melanoma cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.