Abstract
Markov random field (MRF) model-based penalty is widely used in statistical iterative reconstruction (SIR) of low dose CT (LDCT) reconstruction for noise suppression and edge-preserving. In this strategy, normal dose CT scans are usually used as a priori information to further improve the LDCT quality. However, repeated CT scans are needed and registration or segmentation is usually applied first when misalignment between the low-dose and normal-dose scans exists. The study aims to propose a new MRF prior model of SIR based on the NDCT database without registration. In the proposed model, MRF weights are predicted using optimal similar patch samples from the NDCT database. The patch samples are determined by evaluating the similarity with Euclidean distance between patches from NDCT and the target patch of LDCT. The proposed prior term is incorporated into the SIR cost function, which is to be minimized for LDCT reconstruction. The proposed method is tested on an artificial LDCT data based on a high-dose patient data. Preliminary result has proved its potential performance in edge and structure detail preservation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.