Abstract

Radiation risk from computed tomography (CT) is always an issue for patients, especially those in clinical conditions in which repeated CT scanning is required. For patients undergoing repeated CT scanning, a low-dose protocol, such as sparse scanning, is often used, and consequently, an advanced reconstruction algorithm is also needed. To develop a novel algorithm used for sparse-view CT reconstruction associated with the prior image. A low-dose CT reconstruction method based on prior information of normal-dose image (PI-NDI) involving a transformed model for attenuation coefficients of the object to be reconstructed and prior information application in the forward-projection process was used to reconstruct CT images from sparse-view projection data. A digital extended cardiac-torso (XCAT) ventral phantom and a diagnostic head phantom were employed to evaluate the performance of the proposed PI-NDI method. The root-mean-square error (RMSE), peak signal-to-noise ratio (PSNR) and mean percent absolute error (MPAE) of the reconstructed images were measured for quantitative evaluation of the proposed PI-NDI method. The reconstructed images with sparse-view projection data via the proposed PI-NDI method have higher quality by visual inspection than that via the compared methods. In terms of quantitative evaluations, the RMSE measured on the images reconstructed by the PI-NDI method with sparse projection data is comparable to that by MLEM-TV, PWLS-TV and PWLS-PICCS with fully sampled projection data. When the projection data are very sparse, images reconstructed by the PI-NDI method have higher PSNR values and lower MPAE values than those from the compared algorithms. This study presents a new low-dose CT reconstruction method based on prior information of normal-dose image (PI-NDI) for sparse-view CT image reconstruction. The experimental results validate that the new method has superior performance over other state-of-art methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call