Abstract

A low-disturbance automatic bias point control (ABC) method for optical in-phase and quadrature modulators (IQM) is proposed using digital chaotic waveform as dither signals. Two distinct chaotic signals, each with unique initial values, are introduced to the direct current (DC) port of IQM in conjunction with a DC voltage. Due to the robust autocorrelation performance and exceptionally low cross-correlation of chaotic signals, the proposed scheme is capable of mitigating the impact of low-frequency interference, signal-signal beat interference, and high-power RF-induced noise on transmitted signals. In addition, due to the broadwidth of chaotic signals, their power is distributed across a broad frequency range, resulting in a significant reduction in power spectral density (PSD). Compared to the conventional single-tone dither-based ABC method, the proposed scheme exhibits a reduction in peak power of the output chaotic signal by over 24.1 dB, thereby minimizing disturbance to the transmitted signal while maintaining superior accuracy and stability for ABC. The performance of ABC methods, based on single-tone and chaotic signal dithering, are experimentally evaluated in both 40Gbaud 16QAM and 20Gbaud 64QAM transmission systems. The results indicate that the utilization of chaotic dither signals leads to a reduction in measured bit error rate (BER) for 40Gbaud 16QAM and 20Gbaud 64QAM signals, with respective decreases from 2.48% to 1.26% and from 5.31% to 3.35% when the received optical power is -27dBm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.